Add like
Add dislike
Add to saved papers

Inotropic Effects of Nicorandil on Cardiac Contractility Assessed by Left Ventricular Pressure-Volume Relationship Analyses in Anesthetized Monkeys.

Nicorandil is a representative antianginal drug that has dual properties of a nitrate and adenosine triphosphate-sensitive potassium (KATP) channel agonist; however, its effects on integrated cardiac function have not been fully understood. This study was conducted to clarify the functional, hemodynamic, and electrophysiological effects of nicorandil using ventricular pressure-volume loop analysis in isoflurane-anesthetized monkeys. Nicorandil was given intravenously at therapeutic doses of 0.2 and 2 mg/kg over 10 minutes to cynomolgus monkeys (n = 5) with a pause of 10 minutes between the 2 doses. Nicorandil at 0.2 mg/kg caused decreases in systemic blood pressure and left ventricular end-diastolic pressure by its vasodilating action. Nicorandil at 2 mg/kg also exhibited positive inotropic action demonstrated by increased slopes of preload recruitable stroke work relationship, which is a load-independent inotropic parameter. In load-dependent inotropic parameters, positive inotropy of nicorandil was also indicated by the shortened QA interval and increased contractility index; however, significant changes were not observed in the maximal upstroke velocity of left ventricular pressure. Moreover, reflex tachycardia accompanied by shortening of QT/QTc intervals was observed. Overall, the isoflurane-anesthetized monkey model with pressure-volume loop analysis revealed cardiac variables of nicorandil, including a positive inotropy contributable to cardiac performance in addition to its vasodilatory effect. These findings provide useful information when considering the prescription of nicorandil in patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app