Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhanced Immunotherapy Based on Photodynamic Therapy for Both Primary and Lung Metastasis Tumor Eradication.

ACS Nano 2018 Februrary 28
Metastasis and recurrence are two unavoidable and intractable problems in cancer therapy, despite various robust therapeutic approaches. Currently, it seems that immunotherapy is an effective approach to solve these problems, but the high heterogeneity of tumor tissue, inefficient presentation of tumor antigen, and deficient targeting ability of therapy usually blunt the efficacy of immunotherapy and hinder its clinical application. Herein, an approach based on combining photodynamic and immunological therapy was designed and developed. We synthesized a chimeric peptide, PpIX-1MT, which integrates photosensitizer PpIX with immune checkpoint inhibitor 1MT via a caspase-responsive peptide sequence, Asp-Glu-Val-Asp (DEVD), to realize a cascaded synergistic effect. The PpIX-1MT peptide could form nanoparticles in PBS and accumulate in tumor areas via the enhanced penetration retention effect. Upon 630 nm light irradiation, the PpIX-1MT nanoparticles produced reactive oxygen species, induced apoptosis of cancer cells, and thus facilitated the expression of caspase-3 and the production of tumor antigens, which could trigger an intense immune response. The subsequently released 1MT upon caspase-3 cleavage could further strengthen the immune system and help to activate CD8+ T cells effectively. This cascaded synergistic effect could inhibit both primary and lung metastasis tumor effectively, which may provide the solution for solving tumor recurrence and metastasis clinically.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app