EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Preparation of konjac glucomannan/casein blending gels optimized by response surface methodology and assessment of the effects of high-pressure processing on their gel properties and structure.

BACKGROUND: In order to improve the compatibility of polysaccharide-protein mixtures and enhance their performance, a response surface methodology was used to optimize the preparation conditions of konjac glucomannan/casein blend gel. Moreover, the effects of high-pressure processing (HPP) on the gel properties and structure were also investigated.

RESULTS: The optimal preparation parameters were a temperature of 60 °C, a total concentration 40 g kg-1 , and a dietary alkali concentration 5 g kg-1 . Under these conditions, the experimental value of hardness was 38.7 g, which was close to the predicted value. HPP increased gel hardness by 161-223% and led to a more compact structure at 200-600 MPa/10 min, while a hardness increase of ∼120% and damaged structure were observed at 600 MPa/30 min. Fourier transform infrared spectroscopy showed that noncovalent interactions are likely the most important factor in the modification of gel hardness; indeed, hydrogen bonding interactions in the gels are enhanced when subjected to HPP, but are weakened at 600 MPa/30 min.

COUCLUSION: Protein-polysaccharide complexes with excellent properties could be obtained through this method, with broad application prospects in the food industry. © 2018 Society of Chemical Industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app