JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Structure and cis-regulatory analysis of a Drosophila grainyhead neuroblast enhancer.

Evolutionary analysis of cis-regulatory DNA reveals that enhancers consist of clusters of conserved sequence blocks (CSBs) that are made up of both unique and repeated sequence elements. This study seeks to address the basis for spatial and temporal regulation of neuroblas. A search for temporally restricted CNS NB enhancers identified one within the transcription factor grainyhead (grh) gene locus. The intronic enhancer, grh-15, contains two separable semi-autonomous activities, one that drives expression predominantly within the developing brain NBs and another in ventral cord NBs. To gain insight into the function of the CSBs constituting the brain-specific enhancer, we have systematically deleted each CSB and compared the activity of the altered enhancer to that of the full brain-specific enhancer. While our results indicate that information regulating enhancer activity is highly redundant, we have found that individual CSBs convey expression in subsets of larval lineages that are generated from either Type I or Type II NBs. These studies also highlight how evolutionary sequence conservation can be used as a guide the functional analysis of cis-regulatory DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app