Add like
Add dislike
Add to saved papers

Fracture Resistance of Titanium-Based Lithium Disilicate and Zirconia Implant Restorations.

PURPOSE: To evaluate the fracture resistance of a newer lithium disilicate abutment material.

MATERIALS AND METHODS: A premolar-shaped implant crown was designed using CAD/CAM software, and four groups of implant and crown combinations were milled: (1) lithium-disilicate hybrid-abutment crown; (2) "screwmentable" lithium-disilicate hybrid abutment/lithium-disilicate crown with screw channel; (3) lithium-disilicate hybrid abutment/lithium-disilicate crown; and (4) zirconia hybrid abutment/lithium-disilicate crown (control). The specimens were cemented to a titanium-base implant system, subjected to thermocycling and cyclic loading, and fractured in a material testing device.

RESULTS: The lithium-disilicate hybrid-abutment crown had significantly greater fracture load than all the other groups, which were not significantly different from each other.

CONCLUSIONS: Based on fracture load, the new lithium-disilicate hybrid-abutment material may serve as a viable alternative to the use of zirconia as a hybrid-abutment material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app