Add like
Add dislike
Add to saved papers

Role of c-Abl and nephrin in podocyte cytoskeletal remodeling induced by angiotensin II.

Cell Death & Disease 2018 Februrary 8
Our previous study showed that angiotensin II (Ang II) exposure diminished the interaction between nephrin and c-Abl, then c-Abl mediated SHIP2-Akt pathway in the process of podocyte injury in vivo and vitro. However, the relationship between nephrin and c-Abl was unknown. Recently, various studies showed that nephrin was required for cytoskeletal remodeling in glomerular podocytes. But its specific mechanisms remain incompletely understood. As a nonreceptor tyrosine kinase involved in cytoskeletal regulation, c-Abl may be a candidate of signaling proteins interacting with Src homology 2/3 (SH2/SH3) domains of nephrin. Therefore, it is proposed that c-Abl contributes to nephrin-dependent cytoskeletal remodeling of podocytes. Herein, we observed that nephrin-c-Abl colocalization were suppressed in glomeruli of patients with proteinuria. Next, CD16/7-nephrin and c-Abl vectors were constructed to investigate the nephrin-c-Abl signaling pathway in podocyte actin-cytoskeletal remodeling. The disorganized cytoskeleton stimulated by cytochalasin D in COS7 cells was dramatically restored by co-transfection with phosphorylated CD16/7-nephrin and c-Abl full-length constructs. Further, co-immunoprecipitation showed that phosphorylated CD16/7-nephrin interacted with wild-type c-Abl, but not with SH2/SH3-defective c-Abl. These findings suggest that phosphorylated nephrin is able to recruit c-Abl in a SH2/SH3-dependent manner and detached c-Abl from dephosphorylated nephrin contributes to cytoskeletal remodeling in podocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app