JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Unsaturated Drift Velocity of Monolayer Graphene.

Nano Letters 2018 March 15
We observe that carriers in graphene can be accelerated to the Fermi velocity without heating the lattice. At large Fermi energy | EF | > 110 meV, electrons excited by a high-power terahertz pulse ETHz relax by emitting optical phonons, resulting in heating of the graphene lattice and optical-phonon generation. This is owing to enhanced electron-phonon scattering at large Fermi energy, at which the large phase space is available for hot electrons. The emitted optical phonons cause carrier scattering, reducing the drift velocity or carrier mobility. However, for | EF | ≤ 110 meV, electron-phonon scattering rate is suppressed owing to the diminishing density of states near the Dirac point. Therefore, ETHz continues to accelerate carriers without them losing energy to optical phonons, allowing the carriers to travel at the Fermi velocity. The exotic carrier dynamics does not result from the massless nature, but the electron-optical-phonon scattering rate depends on Fermi level in the graphene. Our observations provide insight into the application of graphene for high-speed electronics without degrading carrier mobility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app