Add like
Add dislike
Add to saved papers

Effects of Interactions between ZnO Nanoparticles and Saccharides on Biological Responses.

Zinc oxide (ZnO) nanoparticles (NPs) are widely used as a Zn supplement, because Zn plays a role in many cellular and immune functions but public concern about their potentially undesirable effects on the human body is growing. When NPs are added in food matrices, interactions between NPs and food components occur, which can affect biological systems. In this study, interactions between ZnO NPs and saccharides were investigated by measuring changes in hydrodynamic radius, zeta potential and solubility and by quantifying amounts of adsorbed saccharides on NPs; acacia honey, sugar mixtures (containing equivalent amounts of fructose, glucose, sucrose and maltose) and monosaccharide solutions were used as model compounds. Biological responses of NPs dispersed in different saccharides were also evaluated in human intestinal cells and rats in terms of cytotoxicity, cellular uptake, intestinal transport and oral absorption. The results demonstrate that the hydrodynamic radii and zeta potentials of NPs were highly affected by saccharides. In addition, trace nutrients influenced NP/saccharide interactions and interactive effects between saccharides on the interactions were found. NPs in all saccharides increased inhibition of cell proliferation and enhanced cellular uptake. Oral absorption of NPs was highly enhanced by 5% glucose, which is in-line with intestinal transport result. These findings show that ZnO NPs interact with saccharides and these interactions affects biological responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app