Add like
Add dislike
Add to saved papers

Optimization of crystal growth of sub-micron ZSM-5 zeolite prepared by using Al(OH) 3 extracted from fly ash as an aluminum source.

A novel approach was proposed to prepare ZSM-5 zeolite via hydrothermal synthesis by using Al(OH)3 , which was extracted from fly ash by a staged treatment, as an aluminum source. The synthesis parameters and crystal growth of ZSM-5 were optimized. The optimization of crystal growth for ZSM-5 was investigated under the effect of organic steric-hindrance agents. The crystal phase and morphology of the ZSM-5 were characterized by X-ray diffractometry and scanning electron microscopy, and the particle size distribution was measured by laser particle-size analyzer. The crystal growth of ZSM-5 under different hydrothermal conditions obeyed the "S" regulation. According to the analysis, the formation of ZSM-5 crystal occurred via four steps: (1) the formation of amorphous aluminosilicate by the condensation of silicate ions and aluminate ions; (2) the particle growth and aggregation of the amorphous aluminosilicate; (3) crystallization and crystal growth of ZSM-5; (4) Gentle growth after the zeolite crystal reaches a certain size. The addition of organic steric hindrance agents resulted in a decrease in grain size and crystal-particle formation with a narrow size distribution. Single-grain dispersion resulted and the micropore volume, mesopore volume, and specific surface areas were improved by the presence of organic steric agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app