JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Metabolism in Pluripotent Stem Cells and Early Mammalian Development.

Cell Metabolism 2018 Februrary 7
Emerging and seminal studies have shown that cell metabolism influences gene expression by modifying the epigenome, which can regulate stem cell pluripotency, differentiation, and somatic cell reprogramming. Core pluripotency factors and developmental regulators reciprocally control the expression of key metabolism genes and their encoded pathways. Recent technological advances enabling sensitive detection methods during early mammalian development revealed the state-specific and context-dependent coordination of signal transduction, histone modifications, and gene expression in developing, resting, and malnourished embryos. Here, we discuss metabolism as a potential driver of earliest cell fate through its influence on the epigenome and gene expression in embryos and their in vitro surrogate pluripotent stem cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app