Journal Article
Review
Add like
Add dislike
Add to saved papers

LINC complexes as regulators of meiosis.

Meiosis is a key processes of sexual reproduction in eukaryotes. By combining two cell division cycles with a single round of DNA replication meiosis provides a mechanism to generate haploid gametes. Coincidentally, processes involved in ensuring appropriate segregation of homologous chromosomes also result in genetic recombination and shuffling of genes between each generation. During the first meiotic prophase, rapid telomere-led chromosome movements facilitate alignment and pairing of homologous chromosomes. Forces that produce these movements are generated by the cytoskeleton. Force transmission across the nuclear envelope is dependent upon LINC complexes. These structures consist of SUN and KASH domain proteins that span the two nuclear membranes. Together they represent a pair of links in a molecular chain that couples telomeres to the cytoskeleton. In addition to their force transducing role, LINC complexes also have essential functions ensuring the fidelity of recombination between homologous chromosomes. In this way, LINC complexes are now seen as playing an active and integral role in meiotic progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app