Add like
Add dislike
Add to saved papers

Different models for simulation of mechanical behaviour of porous materials.

Commercially pure Titanium (cpTi) and its alloys are the most successful metallic biomaterials for bone replacement, due to its excellent biomechanical and biofunctional balance. However, these materials have higher elastic modulus when compared with bone, leading to the stress-shielding phenomenon and promoting bone resorption. Development of porous implants with low elastic modulus, providing a good mechanical and functional balance (suitable mechanical strength and optimum osseointegration), is the focus of emergent research in advanced Ti-based alloy biomaterials. With the aim of understanding the mechanical behaviour of porous materials with relation to the porosity level and the porous morphology, a new improved model with three different versions have been developed in this work. The proposed FE model combines the simplicity of a 2D periodic geometry with the complex information of the pore morphology extracted from experimentation. The methodology to generate the 2D simulated microstructure is based on a series of nxn pores distributed in a square matrix. The different versions of the model differ in the way of building the porous geometry. In the first version of the model ("Basic-Pattern Model"), the pores are supposed to be circular and periodically distributed in the matrix, following a perfect pattern. The second version of the model ("Pattern Model") is similar to the previous one, but with elliptic pores with a morphology randomly generated, following statistical information from experiments. In the third version ("Semi-random Model"), a controlled random distribution of the pores is obtained by including a randomness factors in both directions. By making use of the proposed FE model with its different versions, five different porous titanium obtained by the space-holders technique (with porosities θ = 28%, 37%, 47%, 57% and 66%) have been modeled based on experimental information of the pore morphology, and its macroscopic mechanical behaviour has been simulated, showing relatively good agreement with experimental results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app