JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Induction of broadly neutralizing antibodies in Germinal Centre simulations.

Vaccines against mutating pathogens such as influenza, HIV, or plasmodium are poorly protective towards new evolving strains. Rare individuals naturally mount broadly neutralizing antibodies covering most strains, but the requirements for their induction are unknown. The antibody response to vaccination has been recapitulated by in silico models that proposed two opposite schemes: A theory of 'frustration' where one epitope at a time leads to optimal antibody breadth through sequential immunizations, that was proven successful for HIV vaccination in primates. Another theory supports vaccination with cocktails of multiple representative epitopes in a unique prime and boost, which succeeded for influenza in mice. We discuss how in silico models differ in their assumptions, with particular focus on protein affinity representation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app