Add like
Add dislike
Add to saved papers

Comparative study of hydrothermal pretreatment for rice straw and its corresponding mixture of cellulose, xylan, and lignin.

We herein investigated the effect of hemicellulose and lignin on the hydrothermal pretreatment of lignocellulosic biomass for glucose production from cellulose in terms of structural cross-linking between cellulose and the above components. A comparison was made between the hydrothermal pretreatment of biomass and a mixture containing the individual model compounds in the same composition ratio. Thus, rice straw biomass and the mixture containing cellulose, xylan, and lignin were treated in an autoclave reactor at temperatures between 150 and 250 °C for 30 min. The obtained products were then subjected to enzymatic hydrolysis. Interestingly, different results were obtained for the two samples, as the presence of cross-linking between cellulose and lignin in the original biomass sample affected the efficiency of hydrothermal pretreatment. A model was therefore proposed to account for the obtained result in accordance with previous knowledge regarding the behavior of these compounds under hydrothermal conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app