Add like
Add dislike
Add to saved papers

Optimal Tikhonov regularization for DEER spectroscopy.

Tikhonov regularization is the most commonly used method for extracting distance distributions from experimental double electron-electron resonance (DEER) spectroscopy data. This method requires the selection of a regularization parameter, α, and a regularization operator, L. We analyze the performance of a large set of α selection methods and several regularization operators, using a test set of over half a million synthetic noisy DEER traces. These are generated from distance distributions obtained from in silico double labeling of a protein crystal structure of T4 lysozyme with the spin label MTSSL. We compare the methods and operators based on their ability to recover the model distance distributions from the noisy time traces. The results indicate that several α selection methods perform quite well, among them the Akaike information criterion and the generalized cross validation method with either the first- or second-derivative operator. They perform significantly better than currently utilized L-curve methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app