Add like
Add dislike
Add to saved papers

Beta Skin Dosimetry using Passivated Planar Silicon Detector.

Accurate measurement of beta skin dose remains a challenge. This dose is defined as the dose to the basil layer at 7 mg/cm2 (approximately 70 µm) below the surface of the skin and averaged over an area of 1 cm2 . This dose is dependent upon the energy of the beta contamination on the surface of the skin, the area of contamination and the attenuation of this radiation through the 7 mg/cm2 epidermal layer. Ideally, knowing the energy spectra of betas at this level below the surface of the skin would allow accurate prediction of dose. In this work, a Passivated Planar Silicon (PIPS) detector was tested by measuring beta spectra in a geometry simulating skin and, from that, estimating dose. Three calibrated beta sources were used, a low energy beta source, (147 Pm), a medium energy source, (204 Tl), and a high energy beta source, (90 Sr/90 Y) to cover the range of beta energies typically found in skin contamination events. Modelling utilized the MCNPX and VARSKIN 4.0 computer codes to calculate dose in skin and were found to be in good agreement with each other. Experimental measurements using a 300 µm thick, 3 cm2 PIPS and the three sources identified above showed good agreement with MCNPX results (and thus, also with VARSKIN). Finally, MCNPX modelling compared the dose rates from a commercially available, 100 µm thick, 1.5 cm2 PIPS detector and skin, and found that the beta dose could be accurately predicted within 17% over the range of beta energies tested. This result can be obtained with a single measurement and without the need for post data collection analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app