Add like
Add dislike
Add to saved papers

Linear self-assembly formation between gold nanoparticles and aminoglycoside antibiotics.

Ribostamycin is a broad-spectrum aminoglycoside antibiotic with a molecular weight of 454.5 g/mol. Under neutral pH conditions, ribostamycin is highly positive charged because it carries multiple amino groups in its structure. Negatively charged citrate ligand capped-gold nanoparticles (AuNPs) have been studied extensively for their interactions with a wide range of biomolecules including proteins, carbohydrates, and small drug compounds. These studies are aimed at developing new therapeutics and diagnostics by exploiting the unique properties of gold nanoparticles. Under this general aim, we studied the interaction between ribostamycin and AuNPs. Using a suite of analytical techniques including dynamic light scattering (DLS), UV-vis absorption spectroscopy, and dark field optical microscope imaging (DFM), we analyzed the mixture products of AuNPs with various sizes and ribostamycin under different concentrations. Our study revealed for the first time that ribostamycin has a tendency to self-assemble into linear oligomers at increased concentrations (above 250-500 μM). Such self-assembled oligomers then interact with negatively charged AuNPs to produce rod-like AuNP assemblies. Similar findings were observed from another structurally related aminoglycoside antibiotic, amikacin. It is technically challenging to detect and characterize oligomer formation of small molecules. It is especially challenging when the interactions that are holding the oligomers are not very strong. Through their interaction with gold nanoparticles that have exceptionally strong light scattering properties, we were able to observe the self-assembling of ribostamycin and amikacin in solution using various spectroscopic and microscopic techniques. This concentration-dependent self-assembling behavior of ribostamycin and amikacin may have direct relevance to the antibiotic effect of ribostamycin, amikacin and other structurally similar antibiotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app