Add like
Add dislike
Add to saved papers

Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of d and l phenylalanine.

In this study, electrochemical sensors for the enantioselective recognition of d and l phenylalanine were prepared using a molecular imprinting technique in which the electro-polymerization of pyrrole was carried out by Chronopotentiometry(CP) with the target molecules being present on a Ag screen printed electrode's (SPE) surface. The sensing performance was evaluated by multi-potential steps at 0 and 2V(vs. Ag/AgCl) held for 1s and 2s, respectively, for 20 cycles (with the two enantiomers being present at the same concentration). The individual selectivity's for l and d- phenylalanine on their respective imprinted films were estimated to be L/D = 23.480 ± 2.844/1 and D/L = 19.134 ± 1.870/1 respectively, based on the current change between 0 and 2V (vs. Ag/AgCl) with the two enantiomers being present at the same concentration (10mM). Several parameters affecting recognition ability were investigated including: cross-selectivity of d and l- phenylalanine imprinted film, phenylalanine concentration effects, interfering species, deactivation and the storage life of electrode. The phenylalanine imprinted films were also characterized by AC impedance, chronoamperometry, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscope(SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). Finally, a recognition mechanism for the interaction of the polypyrrole film with its template under the influence of applied negative and positive potentials is proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app