Add like
Add dislike
Add to saved papers

Label-free electrochemical biosensors based on 3,3',5,5'-tetramethylbenzidine responsive isoporous silica-micelle membrane.

3,3',5,5'-Tetramethylbenzidine (TMB) has been frequently used as an indicator in G-quadruplex/hemin DNAzyme (G4zyme)-based chemical and biochemical analysis, and its oxidation products are usually monitored by electrochemical or optical methods to quantify G4zyme formation-related analytes. Herein we report a simple electrochemical approach based on isoporous silica-micelle membrane (iSMM) to measure TMB, instead of its oxidation products, in G4zyme-based detection of specific analytes. The iSMM was grown on the indium tin oxide (ITO) electrode, which was composed of highly ordered, vertically oriented silica nanochannels and cylindrical micelles of cetyltrimethylammonium. The iSMM-ITO electrode was selectively responsive to neutral TMB but not its oxidation products, thanks to the sieving and pre-concentration capacity of micellar structures in terms of molecular charge and lipophilicity. In other words, only TMB could be extracted and enriched into micelles and subsequently oxidized at the underlying ITO electrode surface (namely the micelle/ITO interface), generating an amplified anodic current. Since the depletion of TMB was catalyzed by G4zymes formed in the presence of specific analyte, the decrease of this anodic current enabled the quantitative detection of this analyte. The current variation relative to its initial value ((j0 -j)/j0 ), termed as the current attenuation ratio, showed the obvious dependence on the analyte concentration. As proof-of-concept experiments, four substances, i.e., potassium cation (K+ ), adenosine triphosphate, thrombin and nucleic acid, were detected in aqueous media and the analysis of K+ in pre-treated human serum was also performed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app