Add like
Add dislike
Add to saved papers

Efficient Quantum-Dot Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence Emitters as Exciton Harvesters.

Utilization of triplet excitons plays a key role in obtaining highly efficient quantum-dot light-emitting diodes (QD-LEDs). However, to date, only phosphorescent materials have been implemented to harvest triplet excitons in QD-LEDs. In this work, we introduced a thermally activated delayed fluorescence (TADF) emitter, 4,5-di(9H-carbazol-9-yl)phthalonitrile (2CzPN), doped into poly(N-vinylcarbazole) (PVK) as an exciton harvester in red QD-LEDs by solution processing. As a result, electrons leaking to the PVK layer will be trapped by 2CzPN to form long-lifetime TADF excitons in the 2CzPN:PVK layer, and then this harvested exciton energy can be effectively transferred to the adjacent QDs by the Förster resonance energy-transfer process. The fabricated red CdSe/CdS core/shell QD-LEDs show a maximum luminescence efficiency of 17.33 cd/A and longer lifetime. Our results demonstrate that the TADF sensitizer would be a promising candidate to develop highly efficient QD-LEDs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app