Add like
Add dislike
Add to saved papers

Gene variants of the phosphatidylcholine synthesis pathway do not contribute to RDS in the Chinese population.

BACKGROUND: To determine population-based prevalence and disease contribution of phosphatidylcholine synthetic pathway-associated gene variants in a native southern Chinese cohort.

METHODS: We used bloodspots from 2010 that were obtained from the Guangxi Neonatal Screening Center in Nannning China and included the Han (n = 443) and Zhuang (n = 313) ethnic groups. We sequenced the exons of cholinephosphate cytidylyltransferase (PCYT1B) lysophospholipid acyltransferase 1 (LPCAT1), and cholinephosphotransferase (CHPT1) genes, and analyzed both rare and common exonic variants.

RESULTS: We obtained five mutations (G199D, A299V, G434C, Y490C, L312S) with eight alleles in the three candidate genes. The collapsed minor allele frequency for candidate genes was not significantly different between the Han and Zhuang populations (0.0045 vs. 0.0064, respectively, P = 0.725). The combined Han and Zhuang pool collapsed carrier frequency of rare mutation allele was found to be 1.06%, which is much higher than previously reported for the Missouri population (0.1%). Further, we detected six exonic common variants (three in LPCAT1 and three in CHPT1), with three non-synonymous variants (F162S, F341L, M427K) among them. Two of the non-synonymous exonic variants (F341L, M427K) were not found in CHB; F341L was also not previously reported in exome sequencing project.

CONCLUSIONS: The population-based frequency of mutations in the phosphatidylcholine synthesis pathway-associated genes PCYT1B LPCAT1, CHPT1 is low in southern Chinese newborns and there is no evidence of contribution to population-based disease burden of respiratory distress syndrome. As a population-based study of rare mutations and common variants, this work is valuable in directing future research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app