Add like
Add dislike
Add to saved papers

Relaxin activates AMPK-AKT signaling and increases glucose uptake by cultured cardiomyocytes.

Endocrine 2018 April
PURPOSE: Many evidences show that the hormone relaxin plays a pivotal role in the physiology and pathology of the cardiovascular system. This pleiotropic hormone exerts regulatory functions through specific receptors in cardiovascular tissues: in experimental animal models it was shown to induce coronary vasodilation, prevent cardiac damage induced by ischemia/reperfusion and revert cardiac hypertrophy and fibrosis. A tight relationship between this hormone and important metabolic pathways has been suggested, but it is at present unknown if relaxin could regulate cardiac metabolism. Our aim was to study the possible effects of relaxin on cardiomyocyte metabolism.

METHODS: Neonatal rat cardiomyocytes were treated with relaxin and (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays (MTT) were performed to assess metabolic activity; while 2-deoxy-D-[3 H] glucose and BODIPY-labelled fatty acid incorporations were analyzed to measure glucose and fatty acid uptakes, and western blot was utilized to study the intracellular signaling pathways activated by the hormone.

RESULTS: We observed that relaxin at 10 ng/ml was able to increase the level of metabolic activity of cultured neonatal rat cardiomyocytes; the rate of 2-deoxy-D-[3 H]glucose incorporation demonstrated that relaxin also induced an increase in glucose uptake. First evidence is also offered that relaxin can activate the master energy sensor and regulator AMPK in cardiomyocytes. Moreover, the treatment of cardiomyocytes with relaxin also induced dose-dependent increases in ERK1/2, AKT, and AS160 phosphorylation. That raise in AS160 phosphorylation induced by relaxin was prevented by the pretreatment with AMPK and AKT pathways inhibitors, indicating that both molecules play important roles in the relaxin effects reported.

CONCLUSION: Relaxin can regulate cardiomyocyte metabolism and activate AMPK, the central sensor of energy status that maintains cellular energy homeostasis, and also ERK and AKT, two molecular sensing nodes that coordinate dynamic responses of the cell's metabolic responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app