Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Velocity-dependent transfer of adaptation in human running as revealed by split-belt treadmill adaptation.

Animal studies demonstrate that the neural mechanisms underlying locomotion are specific to the modes and/or speeds of locomotion. In line with animal results, human locomotor adaptation studies, particularly those focusing on walking, have revealed limited transfers of adaptation among movement contexts including different locomotion speeds. Running is another common gait that humans utilize in their daily lives and is distinct from walking in terms of the underlying neural mechanisms. The present study employed an adaptation paradigm on a split-belt treadmill to examine the possible independence of neural mechanisms mediating different running speeds. The adaptations learned with split-belt running resulted in aftereffects with magnitudes that varied in a speed-dependent matter. In the two components of the ground reaction force investigated, the anterior braking and posterior propulsive components exhibited different trends. The anterior braking component tended to show larger aftereffect under speeds near the slower side speed of the previously experienced split-belt in contrast to the posterior propulsive component in which the aftereffect size tended to be the largest at a speed that corresponded to the faster side speed of the split-belt. These results show that the neural mechanisms underlying different running speeds in humans may be independent, just as in human walking and animal studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app