JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genomic 5-mC contents in peripheral blood leukocytes were independent protective factors for coronary artery disease with a specific profile in different leukocyte subtypes.

Background: Alterations in DNA methylation are demonstrated in atherosclerosis pathogenesis. However, changing rules of global DNA methylation and hydroxymethylation in peripheral blood leukocytes (PBLs) and different blood cell subtypes of coronary artery disease (CAD) patients are still inconclusive, and much less is known about mechanisms underlying.

Results: We recruited 265 CAD patients and 270 healthy controls with genomic DNA from PBLs, of which 50 patients and 50 controls were randomly chosen with DNA from isolated neutrophils, lymphocytes and monocytes, and RNA from PBLs. Genomic 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) contents were quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) assay. Genomic 5-mC contents were negatively associated with the serum total cholesterol (TC) level ( P  = 0.010), age ( P  = 0.016), and PBL classifications ( P  = 0.023), explaining 6.8% individual variation in controls. Furthermore, genomic 5-mC contents were inversely associated with an increased risk of CAD (odds ratio (OR) = 0.325, 95% confidence interval (CI) = 0.237~0.445, P  = 2.62 × 10- 12 ), independent of PBL counts and classifications, age, sex, histories of hyperlipidemia, hypertension, and diabetes. Within-individual analysis showed a general 5-mC decrease in PBL subtypes, but significant difference was found in monocytes only ( P  = 0.001), accompanied by increased 5-hmC ( P  = 3.212 × 10- 4 ). In addition, coincident to the reduced DNMT1 expression in patients' PBLs, the expression level of DNMT1 was significantly lower ( P  = 0.022) in oxidized low-density lipoprotein (ox-LDL) stimulated THP-1-derived foam cells compared to THP-1 monocytes, with decreased genomic 5-mdC content ( P  = 0.038).

Conclusions: Global hypomethylation of blood cells defined dominantly by the monocyte DNA hypomethylation is independently associated with the risk of CAD in Chinese Han population. The importance of monocytes in atherosclerosis pathophysiology may demonstrate via an epigenetic pathway, but prospective studies are still needed to test the causality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app