Add like
Add dislike
Add to saved papers

Toward a Neuroscience of Adult Cognitive Developmental Theory.

Piaget's genetic epistemology has provided the constructivist approach upon which child developmental theories were founded, in that infants are thought to progress through distinct cognitive stages until they reach maturity in their early 20's. However, it is now well established that cognition continues to develop after early adulthood, and several "neo-Piagetian" theories have emerged in an attempt to better characterize adult cognitive development. For example, Kegan's Constructive Developmental Theory (CDT) argues that the thought processes used by adults to construct their reality change over time, and reaching higher stages of cognitive development entails becoming objectively aware of emotions and beliefs that were previously in the realm of the subconscious. In recent years, neuroscience has shown a growing interest in the biological substrates and neural mechanisms encompassing adult cognitive development, because psychological and psychiatric disorders can arise from deficiencies therein. In this article, we will use Kegan's CDT as a framework to discuss adult cognitive development in relation to closely correlated existing constructs underlying social processing, such as the perception of self and others. We will review the functional imaging and electrophysiologic evidence behind two key concepts relating to these posited developmental changes. These include self-related processing, a field that distinguishes between having conscious experiences ("being a self") and being aware of oneself having conscious experiences ("being aware of being a self"); and theory of mind, which is the objective awareness of possessing mental states such as beliefs and desires (i.e., having a "mind") and the understanding that others possess mental states that can be different from one's own. We shall see that cortical midline structures, including the medial prefrontal cortex and cingulate gyrus, as well as the temporal lobe, are associated with psychological tasks that test these models. In addition, we will review computational modeling approaches to cognitive development, and show how mathematical modeling can provide insights into how sometimes continuous changes in the neural processing substrate can give rise to relatively discrete developmental stages. Because deficiencies in adult cognitive development can result in disorders such as autism and depression, bridging the gaps between developmental psychology, neuroscience, and modeling has potential implications for clinical practice. As neuromodulation techniques such as deep brain and transcranial stimulation continue to advance, interfacing with these systems may lead to the emergence of novel investigational methods and therapeutic strategies in adults suffering from developmental disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app