Add like
Add dislike
Add to saved papers

Biphasic effect of sumatriptan on PTZ-induced seizures in mice: Modulation by 5-HT1B/D receptors and NOS/NO pathway.

Sumatriptan has been among the top choices in the management of migraine headaches. The association between migraine and epilepsy highlights the possible effect of sumatriptan on seizures. In this regard, we investigated sumatriptan effects on PTZ-induced seizures thresholds and delineated the modulatory role of 5-HT1B/D receptors and NOS/NO pathway. Our data revealed the anti-convulsant effects of lower doses of sumatriptan, and pro-convulsant effects of higher doses of sumatriptan. GR 127935, a selective 5-HT1B/D antagonist, could abolish the sumatriptan anti-convulsant effects, but it was ineffective against the sumatriptan pro-convulsant effects. Serotonin depletion by consecutive administration of p-CPA, a selective irreversible inhibitor of tryptophan hydroxylase, could not affect the anti-convulsant effects of sumatriptan. The anti-convulsant effects of sumatriptan was potentiated by L-NAME, a non-selective NOS inhibitor, 7-NI, a selective nNOS inhibitor, but not AG, an iNOS inhibitor. It was also neutralized by L-ARG, a NO precursor. The pro-convulsant effects of sumatriptan were blocked by L-NAME and AG, but not 7-NI. It was also potentiated by L-ARG. Our data revealed that anti-convulsive effects of sumatriptan is mediated by interaction between non-serotonergic 5-HT1B/D receptors and nNOS/NO pathway. Besides, the pro-convulsive effect of sumatriptan is mediated by iNOS/NO pathway independent of 5-HT1B/D receptors. For the first time, this study reported the biphasic effect of sumatriptan on an animal model of GCS and its modulatory pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app