Add like
Add dislike
Add to saved papers

LZTS2 inhibits PI3K/AKT activation and radioresistance in nasopharyngeal carcinoma by interacting with p85.

Cancer Letters 2018 April 29
Phosphoinositide 3-kinase (PI3K) activity is aberrantly activated in nasopharyngeal carcinoma. However, the underlying mechanisms remain unclear. Here, we found that Leucine zipper tumor suppressor 2 (LZTS2) was downregulated and predicted poor prognosis in nasopharyngeal carcinoma patients. Furthermore, we identified the PI3K subunit p85 as a novel LZTS2-interacting protein using an unbiased proteomics approach. Moreover, we demonstrated that LZTS2 competes with p110 for p85 binding and inhibits activation of the PI3K/AKT signaling pathway. Functionally, we showed that LZTS2 suppresses tumorigenesis and radioresistance in nasopharyngeal carcinoma in a p85-dependent manner. Taken together, our results not only provide understanding of the molecular mechanisms by which PI3K/AKT signaling is activated but also suggest that targeting the LZTS2/PI3K/AKT signaling axis is a promising therapeutic strategy for radiosensitization of nasopharyngeal carcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app