JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Routing dependent immune responses after experimental R848-adjuvated vaccination.

Vaccine 2018 March 8
Most traditional vaccines are administered via the intramuscular route. Other routes of administration however, can induce equal or improved protective memory responses and might provide practical advantages such as needle-free immunization, dose sparing and induction of tissue-specific (mucosal) immunity. Here we explored the differences in immunological outcome after immunization with model antigens via two promising immunization routes (intradermal and intranasal) with or without the experimental adjuvant and TLR7/8-agonist R848. Because the adaptive immune response is largely determined by the local innate cells at the site of immunization, the effect of R848-adjuvation on local cellular recruitment, antigenic uptake by antigen-presenting cells and the initiation of the adaptive response were analyzed for the two routes of administration. We show a general immune-stimulating effect of R848 irrespective of the route of administration. This includes influx of neutrophils, macrophages and dendritic cells to the respective draining lymph nodes and an increase in antigen-positive antigen-presenting cells which leads for both intradermal and intranasal immunization to a mainly TH 1 response. Furthermore, both intranasal and intradermal R848-adjuvated immunization induces a local shift in DC subsets; frequencies of CD11b+ DC increase whereas CD103+ DC decrease in relative abundance in the draining lymph node. In spite of these similarities, the outcome of immune responses differs for the respective immunization routes in both magnitude and cytokine profile. Via the intradermal route, the induced T-cell response is higher compared to that after intranasal immunization, which corresponds with the local higher uptake of antigen by antigen-presenting cells after intradermal immunization. Furthermore, R848-adjuvation enhances ex vivo IL-10 and IL-17 production after intranasal, but not intradermal, T-cell activation. Quite the opposite, intradermal immunization leads to a decrease in IL-10 production by the vaccine induced T-cells. This knowledge may lead to a more rational development of novel adjuvanted vaccines administered via non-traditional routes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app