Add like
Add dislike
Add to saved papers

Effect of pulse rate variation on blood flow through axisymmetric and asymmetric stenotic artery models.

The present work reports numerical simulations of blood flow patterns and wall shear stress (WSS) distributions in stenotic arteries, modelled as straight tubes. Inflow waveforms have been generated for different pulse rates considering constant volumetric flow during each pulsation cycle and a two-element windkessel model has been used to specify the outlet pressure. It is noticed that the non-Newtonian shear thinning rheology of blood produces more accurate and realistic predictions of the flow field as compared to the Newtonian assumption. Further, the effects of variation of pulse rates on the spatial and temporal distribution of WSS and oscillatory shear index (OSI) have also been studied for both axisymmetric and asymmetric stenosis. The changes in the mean flow features due to changes in pulsation frequencies have also been reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app