Add like
Add dislike
Add to saved papers

Facile synthesis of prickly platinum-palladium core-shell nanocrystals and their boosted electrocatalytic activity towards polyhydric alcohols oxidation and hydrogen evolution.

Herein, prickly platinum-palladium core-shell nanocrystals (Pt@Pd NCs) were prepared by a facile one-pot aqueous method, only taking sodium pyrrolidone carboxylate (PCA-Na) as the structure director and stabilizing agent. The products were mainly characterized by microscopic analysis, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), followed by discussing the formation mechanism in details. The electrochemical characterizations were examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry (CA). The results revealed that the prepared architectures had the biggest current density (58.4 mA cm-2 ) for ethylene glycol oxidation, which is 3.5-fold, 1.2-fold, 2.3-fold and 2.4-flod enhancement relative to those of home-made single Pt nanoparticles (NPs) and Pd NPs, commercial Pt black and Pd black catalysts, respectively. Also, the obtained Pt@Pd NCs showed improved catalytic activity and stability towards glycerol oxidation and hydrogen evolution reactions compared to the references.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app