Add like
Add dislike
Add to saved papers

Effect of soluble surfactants on pinch-off of moderately viscous drops and satellite size.

HYPOTHESIS: Surfactant redistribution in a liquid bridge close to drop detachment depends on competition between the bridge deformation rate and surfactant equilibration rate. Surfactant effect can be different in situations when diffusion coefficient changes independently of thinning kinetics or in line with it. Using moderately viscous liquids should allow both situations to be explored experimentally.

EXPERIMENTS: Formation of liquid drops at the tip of capillary is studied experimentally for silicone oils and for surfactant-laden and surfactant-free water/glycerol mixtures of moderate viscosity with particular attention to the kinetics of liquid bridge close to pinch-off and formation of satellite droplets.

FINDINGS: Effect of surfactant depends on the dynamic regime of the bridge thinning. In the presence of surfactant, inertial kinetics slows down close to pinch-off demonstrating effective surface tension smaller than dynamic surface tension. An acceleration of thinning kinetics caused by depletion of surfactant from the liquid bridge was observed in viscous and visco-inertial regimes. The size of satellite droplets has a maximum versus viscosity; increasing with surfactant concentration at smaller viscosities and decreasing with an increase of surfactant concentration at largest studied viscosity, where inversion of the pinch-off point was observed for surfactant solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app