Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparative solution equilibrium and structural studies of half-sandwich ruthenium(II)(η 6 -toluene) complexes of picolinate derivatives.

Five Ru(II)(η6 -toluene) complexes formed with 2-picolinic acid and its various derivatives have been synthesized and characterized. X-ray structures of four complexes are also reported. Complex formation processes of [Ru(II)(η6 -toluene)(H2 O)3 ]2+ organometallic cation with the metal-free ligands were studied in aqueous solution in the presence of chloride ions by the combined use of 1 H NMR spectroscopy, UV-visible spectrophotometry and pH-potentiometry. Solution stability, chloride ion affinity and lipophilicity of the complexes were characterized together with in vitro cytotoxic and antiproliferative activity in cancer cell lines being sensitive and resistant to classic chemotherapy and in normal cells as well. Formation of mono complexes such as [Ru(η6 -toluene)(L)(Z)]+/0 (L: completely deprotonated ligand; Z = H2 O/Cl- ) with high stability and [Ru(η6 -toluene)(L)(OH)] was found in solution. The pKa values (8.3-8.7) reflect the formation of low amount of mixed hydroxido species at pH 7.4 at 0.2 M KCl ionic strength. The complexes are fairly hydrophilic and show moderate chloride ion affinity and fast chloride-water exchange processes. The studied complexes exhibit no cytotoxic activity in human cancer cells (IC50  > 100 μM), only complexes formed with 2-picolinic acid (1) and its 3-methyl derivative (2) represented a moderate antiproliferative effect (IC50  = 84.8 (1), 79.2 μM (2)) on a multidrug resistant colon adenocarcinoma cell line revealing considerable multidrug resistant selectivity. Complexes 1 and 2 bind to human serum albumin covalently and relatively slowly with moderate strength at multiple binding sites without ligand cleavage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app