Add like
Add dislike
Add to saved papers

Biomechanical evaluation of pyrocarbon proximal interphalangeal joint arthroplasty: An in-vitro analysis.

Clinical Biomechanics 2018 Februrary
BACKGROUND: Pyrocarbon proximal interphalangeal joint arthroplasty provided patients with excellent pain relief and joint motion, however, overall implant complications have been very variable, with some good outcomes at short-medium-term follow-up and some bad outcomes at longer-term follow-up. Implant loosening with migration, dislocation and implant fracture were the main reported clinical complications. The aim of the present work was to test the hypothesis that the magnitude proximal interphalangeal joint cyclic loads in daily hand functions generates stress-strain behaviour which may be associated with a risk of pyrocarbon component loosening in the long-term.

METHODS: This study was performed using synthetic proximal and middle phalanges to experimentally predict the cortex strain behaviour and implant stability considering different load conditions for both intact and implanted states. Finite element models were developed to assess the structural behaviour of cancellous-bone and pyrocarbon components, these models were validated against experimentally measured cortex strains.

FINDINGS: Cortex strains showed a significant increase at dorsal side and reduction at palmar side between intact and implanted states. Cancellous-bone adjacent to the condylar implant base components suffers a two to threefold strain increase, comparing with the intact condition.

INTERPRETATION: The use of pyrocarbon implant changes the biomechanical behaviour of the joint phalanges and is associated with a potential risk of support cancellous-bone suffer fatigue failure in mid to long term due to the strain increase for cyclic loads in the range of daily hand activities, this risk is more prominent than the risk of bone resorption due to strain-shielding effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app