Add like
Add dislike
Add to saved papers

Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation.

Chemosphere 2018 April
Drainage of potential acid sulfate soils (PASS) for paddy rice cultivation results in the formation of active acid sulfate soils (AASS) and subsequently post-active acid sulfate soils (PAASS). The drainage of PASS causes severe environmental problems including acidification and metal contamination of soil and water resources. This study examined the vertical distribution and partitioning of Al, As, Co, Cu, Fe, Mn, Ni, Pb, and Zn in six tropical acid sulfate soils representing AASS and PAASS under long-term paddy rice cultivation (>145 years). The bulk soil samples were analyzed for total concentrations of Al, As, Co, Cu, Fe, Mn, Ni, Pb, and Zn. The partitioning of these elements was examined by a sequential extraction procedure. Labile Al is higher in ASS which is associated with low soil pH. During drainage, mobilization of As, Cu, and Pb is limited by coprecipitation with (poorly) crystalline Fe oxides minerals in the topsoil and partly oxidized layer of both soil types. These elements are associated with iron (mono) sulfides in unoxidized layer. When PASS are exposed to air, Co, Mn, Ni, and Zn are leached from the soils and are dominantly associated with iron sulfides in the unoxidized sediments. Labile Mn, Ni, and Zn are elevated in the unoxidized layer of PAASS because these elements are leached from the partly oxidized layers and adsorbed onto soil constituents. Cobalt is probably precipitated or adsorbed onto (poorly) crystalline minerals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app