Add like
Add dislike
Add to saved papers

Effects of copper and butyltin compounds on the growth, photosynthetic activity and toxin production of two HAB dinoflagellates: The planktonic Alexandrium catenella and the benthic Ostreopsis cf. ovata.

Controlled laboratory experiments were conducted to test the effects of copper (Cu2+ ) and butyltins (BuT) on the growth, photosynthetic activity and toxin content of two HABs (Harmful Algal Blooms) dinoflagellates, the planktonic Alexandrium catenella and the benthic Ostreopsis cf. ovata. Microalgae were exposed to increasing concentrations of Cu2+ (10-4 to 31 nM) or BuT (0.084 to 84 nM) for seven days. When considering the growth, EC50 values were 0.16 (±0.09) nM and 0.03 (±0.02) nM of Cu2+ for A. catenella and O. cf. ovata, respectively. Regarding BuT, EC50 was 14.2 (±6) nM for O. cf. ovata, while A. catenella growth inhibition appeared at BuT concentrations ≥27 nM. Photosynthetic activity of the studied dinoflagellates decreased with increasing Cu and BuT concentrations. For O. cf. ovata, the response of this physiological parameter to contamination was less sensitive than the biomass. Cu exposure induced the formation of temporary cysts in both organisms that could resist adverse conditions. The ovatoxin-a and -b concentrations in O. cf. ovata cells increased significantly in the presence of Cu. Altogether, the results suggest a better tolerance of the planktonic A. catenella to Cu and BuT. This could result in a differentiated selection pressure exerted by these metals on phytoplankton species in highly polluted waters. The over-production of toxins in response to Cu stress could pose supplementary health and socio-economic threats in the contaminated marine ecosystems where HABs develop.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app