Add like
Add dislike
Add to saved papers

Alterations in haemolymph proteome of Mytilus galloprovincialis mussel after an induced injury.

A proteomic and biochemical approach was performed to assess the effects of an induced muscle injury on the haemolymph of bivalve molluscs. For this purpose, Mytilus galloprovincialis were exposed to puncture of adductor muscle for three consecutive days, and their haemolymph proteome was then compared to healthy animals using 2-dimensional electrophoresis (2-DE) to identify proteins that differed significantly in abundance. Those proteins were then subjected to tandem mass spectrometry and 6 proteins, namely myosin, tropomyosin, CuZn superoxide dismutase (SOD), triosephosphate isomerase, EP protein and small heat shock protein were identified. SOD and tropomyosin changes were verified by spectrophotometric measurements and western blotting, respectively. As some of the proteins identified are related to muscular damage and oxidative stress, other biomarkers associated with these processes that can be evaluated by automatic biochemical assays were measured including troponin, creatine kinase (CK), and aspartate aminotransferase (AST) for muscle damage, and SOD, trolox equivalent antioxidant capacity (TEAC) and esterase activity (EA) for oxidative stress. Significantly higher concentrations of troponin, CK, AST, and TEAC were observed in mussels after puncture, being also possible biomarkers of non-specific induced damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app