JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Development of Clay-Based Films.

Phyllosilicate (clay) is used as a filler to improve the thermal stability and gas barrier properties of plastic films. However, few film preparation trials used clays as the main component. Many researchers have studied clay-based films (CBFs) that are heat-resistant and have high gas barrier properties against various gases (such as oxygen, water vapor, and hydrogen) over a wide range of temperatures. An organic binder improves the film toughness, but increases gas permeation. CBFs are obtained by solution casting and show excellent incombustibility and electrical insulation. Moreover, transparent films, e. g. for optoelectronic applications, can be prepared using synthetic clay, which does not contain colored impurities. The water vapor barrier properties of CBFs were achieved using reduced-charge smectite. Applications of CBF materials include food packaging, solar cell back sheets, hydrogen tanks, gaskets, water vapor barrier display films, substrates for printed electronics, thermal insulation, and electric insulation. Recent achievements in the field and future prospects are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app