Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantitative MRI in murine radiation-induced rectocolitis: comparison with histopathological inflammation score.

Murine radiation-induced rectocolitis is considered to be a relevant animal model of gastrointestinal inflammation. The purpose of our study was to compare quantitative MRI and histopathological features in this gastrointestinal inflammation model. Radiation rectocolitis was induced by localized single-dose radiation (27 Gy) in Sprague-Dawley rats. T2 -weighted, T1 -weighted and diffusion-weighted MRI was performed at 7 T in 16 rats between 2 and 4 weeks after irradiation and in 10 control rats. Rats were sacrificed and the histopathological inflammation score of the colorectal samples was assessed. The irradiated rats showed significant increase in colorectal wall thickness (2.1 ± 0.3 mm versus 0.8 ± 0.3 mm in control rats, P < 0.0001), normalized T2 signal intensity (4 ± 0.8 versus 2 ± 0.4 AU, P < 0.0001), normalized T1 signal intensity (1.4 ± 0.1 versus 1.1 ± 0.2 AU, P = 0.0009) and apparent and pure diffusion coefficients (ADC and D) (2.06 × 10-3 ± 0.34 versus 1.51 × 10-3 ± 0.23 mm2 /s, P = 0.0004, and 1.97 × 10-3 ± 0.43 mm2 /s versus 1.48 × 10-3 ± 0.29 mm2 /s, P = 0.008, respectively). Colorectal wall thickness (r = 0.84, P < 0.0001), normalized T2 signal intensity (r = 0.85, P < 0.0001) and ADC (r = 0.80, P < 0.0001) were strongly correlated with the histopathological inflammation score, whereas normalized T1 signal intensity and D were moderately correlated (r = 0.64, P = 0.0006, and r = 0.65, P = 0.0003, respectively). High-field MRI features of single-dose radiation-induced rectocolitis in rats differ significantly from those of control rats. Quantitative MRI characteristics, especially wall thickness, normalized T2 signal intensity, ADC and D, are potential markers of the histopathological inflammation score.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app