Add like
Add dislike
Add to saved papers

Mapping of Protein Interfaces in Live Cells Using Genetically Encoded Crosslinkers.

Understanding the topology of protein-protein interactions is a matter of fundamental importance in the biomedical field. Biophysical approaches such as X-ray crystallography and nuclear magnetic resonance can investigate in detail only isolated protein complexes that are reconstituted in an artificial environment. Alternative methods are needed to investigate protein interactions in a physiological context, as well as to characterize protein complexes that elude the direct structural characterization. We describe here a general strategy to investigate protein interactions at the molecular level directly in the live mammalian cell, which is based on the genetic incorporation of photo- and chemical crosslinking noncanonical amino acids. First a photo-crosslinking amino acid is used to map putative interaction surfaces and determine which positions of a protein come into proximity of an associated partner. In a second step, the subset of residues that belong to the binding interface are substituted with a chemical crosslinker that reacts selectively with proximal cysteines strategically placed in the interaction partner. This allows determining inter-molecular spatial constraints that provide the basis for building accurate molecular models. In this chapter, we illustrate the detailed application of this experimental strategy to unravel the binding modus of the 40-mer neuropeptide hormone Urocortin1 to its class B G-protein coupled receptor, the corticotropin releasing factor receptor type 1. The approach is in principle applicable to any protein complex independent of protein type and size, employs established techniques of noncanonical amino acid mutagenesis, and is feasible in any molecular biology laboratory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app