Add like
Add dislike
Add to saved papers

Site-Specific Protein Labeling with Tetrazine Amino Acids.

Genetic code expansion is commonly used to introduce bioorthogonal reactive functional groups onto proteins for labeling. In recent years, the inverse electron demand Diels-Alder reaction between tetrazines and strained trans-cyclooctenes has increased in popularity as a bioorthogonal ligation for protein labeling due to its fast reaction rate and high in vivo stability. We provide methods for the facile synthesis of a tetrazine containing amino acid, Tet-v2.0, and the site-specific incorporation of Tet-v2.0 into proteins via genetic code expansion. Furthermore, we demonstrate that proteins containing Tet-v2.0 can be quickly and efficiently reacted with strained alkene labels at low concentrations. This chemistry has enabled the labeling of protein surfaces with fluorophores, inhibitors, or common posttranslational modifications such as glycosylation or lipidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app