Add like
Add dislike
Add to saved papers

Mesenchymal stem cells over-expressing cxcl12 enhance the radioresistance of the small intestine.

Cell Death & Disease 2018 Februrary 6
The chemokine C-X-C motif chemokine 12 (CXCL12) greatly impacts various biological processes in mammals, including cell survival, growth and migration. Mesenchymal stem cells (MSCs) are promising tools for carrying foreign genes to treat radiation-induced injuries in the intestinal epithelium. In this study, human adipose-derived MSCs were constructed to over-express the mouse cxcl12 gene to treat such injuries. In vitro, because of the high levels of mouse CXCL12 in conditioned medium produced by mouse cxcl12 gene-modified cells, phosphorylation of Akt at Ser473 and Erk1/2 at Thr202/Thr204 was increased within crypt cells of irradiated organoids compared with unmodified controls. Moreover, intracellular stabilization of β-catenin was achieved after treatment of mouse cxcl12 gene-modified cells with conditioned medium. As a result, survival of crypt cells was maintained and their proliferation was promoted. When delivering mouse cxcl12 gene-modified cells into irradiated BALB/c nude mice, mice were rescued despite the clearance of cells from the host within 1 week. Irradiated mice that received mouse cxcl12 gene-modified MSCs exhibited reduced serum levels of interleukin-1α (IL-1α) and IL-6 as well as elevated levels of CXCL12. Additionally, epithelial recovery from radiation stress was accelerated compared with the irradiated-alone controls. Moreover, mouse cxcl12 gene-modified MSCs were superior to unmodified cells at strengthening host repair responses to radiation stress as well as presenting increased serum CXCL12 levels and decreased serum IL-1α levels. Furthermore, the number of crypt cells that were positive for phosphorylated Akt at Ser473 and phosphorylated Erk1/2 at Thr202/Thr204 increased following treatment with mouse cxcl12 gene-modified MSCs. Thus, cxcl12 gene-modified MSCs confer radioresistance to the intestinal epithelium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app