JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores.

Scientific Reports 2018 Februrary 6
By combining the two basic deformation mechanisms for auxetic open-cell metamaterials, re-entrant angle and chirality, new hybrid chiral mechanical metamaterials are designed and fabricated via a multi-material 3D printer. Results from mechanical experiments on the 3D printed prototypes and systematic Finite Element (FE) simulations show that the new designs can achieve subsequential cell-opening mechanism under a very large range of overall strains (2.91%-52.6%). Also, the effective stiffness, the Poisson's ratio and the cell-opening rate of the new designs can be tuned in a wide range by tailoring the two independent geometric parameters: the cell size ratio [Formula: see text], and re-entrant angle θ. As an example application, a sequential particle release mechanism of the new designs was also systematically explored. This mechanism has potential application in drug delivery. The present new design concepts can be used to develop new multi-functional smart composites, sensors and/or actuators which are responsive to external load and/or environmental conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app