Add like
Add dislike
Add to saved papers

Heuristic model for ballistic photon detection in collimated transmittance measurements.

Optics Express 2018 January 23
An heuristic model for ballistic photon detection in continuous-wave measurements of collimated transmittance through a slab is presented. The model is based on the small angle approximation and the diffusion equation and covers all the ranges of optical thicknesses of the slab from the ballistic to the diffusive regime. The performances of the model have been studied by means of comparisons with the results of gold standard Monte Carlo simulations for a wide range of optical thicknesses and two types of scattering functions. For a non-absorbing slab and field of view of the receiver less than 3° the model shows errors less than 15% for any value of the optical thickness. Even for an albedo value of 0.9, and field of view of the receiver less than 3° the model shows errors less than 20%. These results have been verified for a large set of scattering functions based on the Henyey-Greenstein model and Mie theory for spherical scatterers. The latter has also been used to simulate the scattering function of Intralipid, a diffusive material widely used as reference standard for tissue simulating phantoms. The proposed model represents an effective improvement compared to the existing literature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app