JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mechanistic Studies of the Inhibition of Insulin Fibril Formation by Rosmarinic Acid.

The self-assembly of insulin to form amyloid fibrils has been widely studied because it is a significant problem in the medical management of diabetes and is an important model system for the investigation of amyloid formation and its inhibition. A few inhibitors of insulin fibrillation have been identified with potencies that could be higher. Knowledge of how these work at the molecular level is not known but important for the development of more potent inhibitors. Here we show that rosmarinic acid completely inhibits amyloid formation by dimeric insulin at pH 2 and 60 °C. In contrast to other polyphenols, rosmarinic acid is soluble in water and does not degrade at elevated temperatures, and thus we were able to decipher the mechanism of inhibition by a combination of solution-state 1 H NMR spectroscopy and molecular docking. On the basis of 1 H chemical shift perturbations, intermolecular nuclear Overhauser effect enhancements between rosmarinic acid and specific residues of insulin, and slowed dynamics of rosmarinic acid in the presence of insulin, we show that rosmarinic acid binds to a pocket found on the surface of each insulin monomer. This results in the formation of a mixed tetramolecular aromatic network on the surface of insulin dimer, resulting in increased resistance of the amyloidogenic protein to thermal unfolding. This finding opens new avenues for the design of potent inhibitors of amyloid formation and provides strong experimental evidence for the role of surface aromatic clusters in increasing the thermal stability of proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app