Add like
Add dislike
Add to saved papers

Ligand-Dependent Nanoparticle Assembly and Its Impact on the Printing of Transparent Electrodes.

Metal grids with submicron line diameters are optically transparent, mechanically flexible, and suitable materials for transparent and flexible electronics. Printing such narrow lines with dilute metal nanoparticle inks is challenging because it requires percolation throughout the particle packing. Here, we print fully connected submicron lines of 3.2 nm diameter gold nanoparticles and vary the organic ligand shell to study the relation between colloidal interactions, ligand binding to the metal core, and conductivity of the printed lines. We find that particles with repulsive potentials aid the formation of continuous lines, but the required long ligand molecules impede conductivity and need to be removed after printing. Weakly bound alkylamines provided sufficient interparticle repulsion and were easy to remove with a soft plasma treatment after printing, so that grids with a transparencies above 90% and a conductivity of 150 Ω sq-1 could be printed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app