Journal Article
Review
Add like
Add dislike
Add to saved papers

Plasma exosomes as novel biomarker for the early diagnosis of gastric cancer.

Exosomes are lipid bilayer vesicles of endocytic origin ranging from 30 to 100 nm in size, and contain various nucleic acid molecules such as DNA, mRNA, miRNA, lncRNA and multiple proteins, which could be transferred into target cells. Recent study indicated that exosomes as information carriers between cells has introduced us to a new previously unknown biological communication system. Increasing evidences show that exosomes play a crucial role in gastric cancer because they are potential to influence normal cellular physiology and promote various states of the cancer. In this review, we focus on the latest findings on exosomes in the plasma of gastric cancer patients, mainly summarizing the functions of miRNAs, lncRNAs and multiple proteins in diagnosis, prognosis, and in establishing treatment regimens against gastric cancer. Furtherly, potential functions of exosomes as novel diagnostic biomarkers for gastric cancer are discussed extensively. Exosomes are believed to be a non-invasive disease biomarker with a dual capability to provide insights into the early diagnosis for gastric cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app