Add like
Add dislike
Add to saved papers

Low-Field Bi-Skyrmion Formation in a Noncentrosymmetric Chimney Ladder Ferromagnet.

Physical Review Letters 2018 January 20
The real-space spin texture and the relevant magnetic parameters were investigated for an easy-axis noncentrosymmetric ferromagnet Cr_{11}Ge_{19} with Nowotny chimney ladder structure. Using Lorentz transmission electron microscopy, we report the formation of bi-Skyrmions, i.e., pairs of spin vortices with opposite magnetic helicities. The quantitative evaluation of the magnetocrystalline anisotropy and Dzyaloshinskii-Moriya interaction (DMI) proves that the magnetic dipolar interaction plays a more important role than the DMI on the observed bi-Skyrmion formation. Notably, the critical magnetic field value required for the formation of bi-Skyrmions turned out to be extremely small in this system, which is ascribed to strong easy-axis anisotropy associated with the characteristic helix crystal structure. The family of Nowotny chimney ladder compounds may offer a unique material platform where two distinctive Skyrmion formation mechanisms favoring different topological spin textures can become simultaneously active.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app