Add like
Add dislike
Add to saved papers

Engineering a Zirconium MOF through Tandem "Click" Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface.

Inorganic Chemistry 2018 Februrary 20
Metal-organic frameworks (MOFs) assembled from linkers of identical length but with different functional groups have gained increasing interests recently. However, it is very challenging for precise control of the ratios of different functionalities. Herein, we reported a stable azide- and alkyne-appended Zr-MOF that can undergo quantitative tandem click reactions on the different functional sites, thus providing a unique platform for quantitative loading of bifunctional moieties. As an added advantage, the same MOF product can be obtained via two independent routes. The method is versatile and can tolerate a wide variety of functional groups, and furthermore, a heterogeneous acid-base MOF organocatalyst was synthesized by tandemly introducing both acidic and basic groups onto the predesigned pore surface. The presented strategy provides a general way toward the construction of bifunctional MOFs with a precise control of ratio of different functionalities for desirable applications in future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app