Add like
Add dislike
Add to saved papers

Mimicking Synaptic Plasticity and Neural Network Using Memtranstors.

Artificial synaptic devices that mimic the functions of biological synapses have drawn enormous interest because of their potential in developing brain-inspired computing. Current studies are focusing on memristive devices in which the change of the conductance state is used to emulate synaptic behaviors. Here, a new type of artificial synaptic devices based on the memtranstor is demonstrated, which is a fundamental circuit memelement in addition to the memristor, memcapacitor, and meminductor. The state of transtance (presented by the magnetoelectric voltage) in memtranstors acting as the synaptic weight can be tuned continuously with a large number of nonvolatile levels by engineering the applied voltage pulses. Synaptic behaviors including the long-term potentiation, long-term depression, and spiking-time-dependent plasticity are implemented in memtranstors made of Ni/0.7Pb(Mg1/3 Nb2/3 )O3 -0.3PbTiO3 /Ni multiferroic heterostructures. Simulations reveal the capability of pattern learning in a memtranstor network. The work elucidates the promise of memtranstors as artificial synaptic devices with low energy consumption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app