Add like
Add dislike
Add to saved papers

MicroRNA-1 inhibits tumorigenicity of esophageal squamous cell carcinoma and enhances sensitivity to gefitinib.

Oncology Letters 2018 January
Dysregulation of microRNAs in various types of human cancer promote or suppress oncogenesis. MicroRNA (miR)-1 was previously revealed to function as a tumor suppressor in prostate cancer cells, and its expression was associated with reduced metastatic potential in lung cancer. The present study investigated the role of miR-1 and its association with phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) in the pathophysiology of esophageal squamous cell carcinoma (ESCC), and analyzed the effects of miR-1 inhibitor or mimics on sensitivity to epidermal growth factor receptor-tyrosine kinase inhibitors, the alterations of cell cycle distribution and apoptosis in ESCC cells. Compared with normal tissues, the level of miR-1 expression was significantly lower and PIK3CA expression was higher in ESCC tissues. The level of miR-1 expression was also inversely associated with the level of PIK3CA mRNA expression. Low miR-1 and high PIK3CA expression levels were strongly associated with lymph node metastasis, and the level of miR-1 expression was negatively associated with clinical Tumor-Node-Metastasis stage. Furthermore, exogenous expression of miR-1 inhibited growth, arrested cell cycle in the G1 phase and increased apoptosis in ESCC cells, whereas it decreased PIK3CA protein expression levels. Furthermore, overexpression of miR-1 increased the sensitivity of ESCC cells to the anticancer drug, gefitinib. A possible mechanism for this increased sensitivity to gefitinib may be inactivation of the PIK3CA signaling pathway. To the best of our knowledge, this is the first time that the results of the present study demonstrated that miR-1 upregulation may be a potential strategy for the treatment of human ESCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app